

CLASSIFICATION OF RISK ANALYSIS AND PROJECT CONTROL PERFORMANCE ON EMPIRICAL PROJECT DATA

Jordy Batselier

Livine Maerschalck, Annelies Troch, Pieter Van Schoors

Supervised by prof. dr. Mario Vanhoucke

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

SITUATING THE RESEARCH

Integrated Project Management and Control

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

(Vanhoucke, 2012)

Mario Vanhoucke

Project Management with Dynamic Scheduling

Baseline Scheduling, Risk Analysis and Project Control

DATABASE CONSTRUCTION

- Goal project management literature
 - real project data needed (\leftrightarrow generated/simulated projects)
 - selecting the best case studies received by our department (group works, master dissertations, ...)
 - structuring the project data in project cards = tool for categorizing, evaluating and acquiring project data

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Create the largest and most diverse real-life project database in

	Case Name: Claeys-Verhelst Premises
OR-AS Operations Research Applications and Solutions	OR-AS Operations Research - Applications and Solutions www.or-as.be info@or-as.be
Submitted by	Laura Demevere
Date	December 23, 2011
File Name	C2011-13 Claevs-Verhelst Premises.p2x

1. Project description

The expansion of the company premises of sanitary specialist Claeys-Verhelst, located in Oudenburg (Belgium), through the construction of a new three-floor building harboring a warehouse, office space, a small showroom and recreational facilities for the employees.

The project consists of activity, resource and cost data that were obtained directly from the actual project owner.

serial

2. Project properties

2.1. Baseline Schedule

General		Network topology	
# Activities	49	Serial/Parallel (SP)	41%
Planned Duration (PD)	442 days*	Activity Distribution (AD)	50%
Budget At Completion (BAC)	3,027,133 €	Length of Arcs (LA)	5%
Renewable Resources	12	Topological Float (TF)	43%
Consumable Resources			

* standard eight-hour working days

2.2. Risk Analysis

Use of many different non-standard triangular distribution profiles inputted by the user (mostly skewed), complemented by some predefined symmetrical, skewed and risk-free distributions.

	Cost sensitivity				
	avg [%]	std dev [%]	skew [-]		
CRI-r	7.7	13.2	2.5		
CRI-rho	35.2	18.8	-0.6		
CRI-tau	61.6	43.3	-0.3		

	Time sensitivity				
	avg [%]	std dev [%]	skew [-]		
CI	17.0	28.0	1.8		
SI	42.9	29.2	0.4		
SSI	3.5	8.8	3.2		
CRI-r	6.6	10.4	2.6		
CRI-rho	20.3	19.5	0.7		
CRI-tau	33.0	41.4	1.0		

	Resource sensitivity				
	avg [%]	std dev [%]	skew [-]		
CRI-r	17.9	22.4	1.3		
CRI-rho	34.0	20.8	-0.3		
CRI-tau	44.6	41.2	0.5		

2.3. Project Control

2.3.1. Simulated forecasting accuracy

MAP

lower MAPE = higher accuracy

Planned Value Method (Anbarí, 2003)

Earned Duration Method (Jacob & Kane, 2004)

Earned Schedule Method (Lípke, 2003)

The accuracy of time and cost forecasting methods has been evaluated based on Monte Carlo simulation runs using the risk profiles described in section "2.2. Risk Analysis". Based on these risk profiles, the Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) has been calculated to evaluate the expected accuracy of the time and cost predictions, EAC(t) and EAC, respectively.

Si	mulated EAC(t) accura	асу		Sim
method - PF	MAPE [%]	MPE [%]	method (PF)	
PV - 1	4.9	3.0	1	
PV - SPI	38.3	-29.2	CPI	
PV - SCI	38.4	-29.3	SPI	
ED - 1	9.7	6.0	SPI(t)	
ED - SPI	38.0	-29.5	SCI	
ED - SCI	38.1	-29.6	SCI(t)	
ES - 1	3.5	1.9	0.8 CPI + 0.2 SPI	ĺ
ES - SPI(t)	18.7	-13.7	0.8 CPI + 0.2 SPI(t)	
ES - SCI(t)	18.7	-13.7		

According to the MAPE values¹ the best performance for time forecasting can be expected from the unweighted Earned Schedule method. For cost forecasting the unweighted and CPI-weighted methods should yield the best results.

$$E = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A - F_t}{A} \right|$$

2.3.2. Tracking description

Manual tracking was performed over 8 tracking periods with irregular lengths varying from approximately one month to six months. The Real Duration and Real Cost mentioned in section "2.3.3. Earned Value Management" are based on manual user input.

The tracking information obtained from the project owner and introduced in ProTrack includes actual activity start dates and durations, but no actual activity costs.


```
www.protrack.be
```

2.3.3. Earned Value Management

2.3.3.1. Performance metrics

	CV [€]	SV [€]	SV(t) [d]	CPI [-]	SPI [-]	SPI(t) [-]	p-factor [-]
avg	-51,705	-214,051	-22.20	0.96	0.82	0.92	1.00
std dev	30,253	240,842	14.86	0.03	0.23	0.07	0.00
final	-75,263	0	-12.00	0.98	1.00	0.97	1.00

2.3.3.2. Time forecasting

PD	442 days	Re	al Duration	454 days		Late	2.71%
				-			
EAC(t)				Rea	al Accuracy	
method - PF		avg [d]	std d	ev [d]	MAPE [%]	1	MPE [%]
PV - 1		473.52	35	.18	6.7		4.3
PV - SPI		624.66	295	5.86	39.9		37.6
PV - SCI		659.19	342	2.84	45.9		45.2
ED - 1		490.61	51	.57	9.2		8.1
ED - SPI		627.47	294	4.16	39.2		38.2
ED - SCI		4649.98	336	6.28	44.2		43.2
ES - 1		464.52	14	.90	3.0		2.3
ES - SPI(t)		484.11	38	.61	7.3		6.6
ES - SCI(t)		493.09	50	.47	9.3		8.6

2.3.3.3. Cost forecasting

BAC 3,027,	133 € Re	eal Cost 3,102,395	5€ Ov	er Budget 2.49%
EAC			Real	Accuracy
method (PF)	avg [€]	std dev [€]	MAPE [%]	MPE [%]
1	3,078,838	30,253	0.9	-0.8
CPI	3,152,058	100,643	2.3	1.6
SPI	4,113,269	1,842,501	33.2	32.6
SPI(t)	3,272,787	238,336	6.1	5.5
SCI	4,284,566	2,159,545	38.7	38.1
SCI(t)	3,361,159	356,377	9.0	8.3
0.8 CPI + 0.2 SPI	3,249,074	243,574	5.3	4.7
0.8 CPI + 0.2 SPI(t)	3,174,061	122,906	2.9	2.3

Project cards \rightarrow better overview easier categorization enable qualitative expansion of database

PROJECT DATABASE a **large** and **diverse** real-life project database

Size

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

but continuous expansion

(10 to 15 new projects by January 2014)

Oct-13 Nov-13

PROJECT DATABASE a large and diverse real-life project database

Diversity

PROJECT DATABASE a large and diverse real-life project database

Diversity

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Network structure (serial-parallel)

S

extend database with fully authentic projects with tracking (all new projects will fulfill these requirements)

DISSERTATION PRESENTATIONS

Pieter Van Schoors

Comparison of the performance of SRA and EVM for parallel projects

Livine Maerschalck

Benefits of the Work Package Methodology compared to traditional EVM

Annelies Troch

Evaluation of EVM time and cost forecasting methods based on multiple simulated scenarios

COMPARISON OF EVM AND SRA: A CASE STUDY

PieterVan Schoors

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

CONTENT

- Case study projects
- Research questions
- Results
- Conclusions

CASE STUDY PROJECTS

Collaboration with Beddeleem

Projects with remarkable SP values

Project	SP
Construction site 1	0,20
Construction site 3	0,25
Construction site 5	0,66
Construction site 6	0,36

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

BEDDELEEM

RESEARCH QUESTIONS

- "On the dynamic use of project performance and schedule risk information during project tracking" (Vanhoucke, 2011)
- Apply on real-life projects
- Research question 1: Is the SRA technique a better alternative compared to the EVM technique in case the project is characterized by a parallel network topology?

RESULTS

Results for research question I

		Which technique is most efficient?				
Projects	Focus	EVM	SRA	Both	None	
Construction site 1	Time	Х				
	Cost				X	
Construction site 3	Time	X				
	Cost				X	
Construction site 5	Time				Х	
	Cost		Х			
Construction site 6	Time				X	
	Cost				X	

RESULTS

Search for cause

Creation of research questions 1.1 and 1.2

RESULTS

Research question 1.1: Adjusted risk distribution profiles for risk analysis

• Research question 1.2: Twice as many control points

RESULTS

Results for research question 1.1 → No significant improvement

		W	Which technique is most efficient?				
Projects	Focus	EVM	SRA	Both	None		
Construction site 1	Time	X					
	Cost				Х		
Construction site 3	Time	X					
	Cost				Х		
Construction site 5	Time				Х		
	Cost		Х				
Construction site 6	Time		X				
	Cost				Х		

RESULTS

Results for research question 1.2 → Positive trend

		Which technique is most efficient?							
Projects	Focus	EVM	SRA	Both	None				
Construction site 1	Time	X							
	Cost				Х				
Construction site 3	Time	X							
	Cost		X						
Construction site 5	Time				X				
	Cost		Х						
Construction site 6	Time		X						
	Cost		X						

CONCLUSIONS

Research question 1

- ► No conclusive evidence
- More control points
 - = better results

Research question 1.1

- Bad planning
 - = bad project management

Research question 1.2

		Which technique is most efficient						
Projects	Focus	EVM	SRA	Both	None			
Construction site 1	Time	Х						
	Cost				Х			
Construction site 3	Time	X						
	Cost				Х			
Construction site 5	Time				Х			
	Cost		Х					
Construction site 6	Time				Х			
	Cost				Х			
Construction site 1	Time	Х						
	Cost				Х			
Construction site 3	Time	Х						
	Cost				Х			
Construction site 5	Time				Х			
	Cost		Х					
Construction site 6	Time		Х					
	Cost				Х			
Construction site 1	Time	Х						
	Cost				Х			
Construction site 3	Time	Х						
	Cost		Х					
Construction site 5	Time				Х			
	Cost		Х					
Construction site 6	Time		Х					
	Cost		Х					

CASE STUDY: THE INFLUENCE OF THE WORK PACKAGE METHODOLOGY ON THF FORFCAST OF COST AND TIME USING EVM

Livine Maerschalck

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

EVM: forecast cost

EVM-WPM

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Case Study

 $10 \ 11 \ 12$

First Results

EVM-WPM

UNIVERSITEIT GENT

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Case Study

WP 2

First Results

FVM-WPM

$$MPE = = \frac{1}{T} \sum_{t=1}^{T} \frac{EAC - RC}{RC} * 100$$
$$MAPE = \frac{1}{T} \sum_{t=1}^{T} \frac{|EAC - RC|}{RC} * 100$$

EAC = AC + PCWR

- EVM

EVM-WPM

Case Study

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

First Results

EVM-WPM

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Case Study

 $10 \ 11 \ 12$

First Results

EVM-WPM

EVM-WPM

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Case Study

First Results

EVM-WPM

- EVM

$$MPE = = \frac{1}{T} \sum_{t=1}^{T} \frac{EAC(t) - RD}{RD} * 100$$
$$EAC(t) = AD$$
$$MAPE = \frac{1}{T} \sum_{t=1}^{T} \frac{|EAC(t) - RD|}{RD} * 100$$

EVM-WPM

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Case Study

+ PDWR

First Results

CASE STUDY

# PROJECT	BUDGET	DURATION	STATE	# ACTIVITIES
1	60 MIO €	4 Y	ON SCHEME	18
2	61 MIO €	11 Y	+ TIME	17
3	1,8 MIO €	5 Y	+ COST, + TIME	38
4	1,3 MIO €	$6 \mathrm{M}$	+ TIME	5
5	17 MIO €	5 Y	ON SCHEME	12
6	60 MIO €	3 Y	-COST, + TIME	10
7	3 MIO €	2 Y	- COST	14
8	5,7 MIO €	3Y	+ COST	22
9	1 MIO €	$5\mathrm{M}$	+ TIME	7
10	0,051MIO €	$2 \mathrm{M}$	+ TIME, $+$ COST	5
11	0, 23 MIO €	$6 \mathrm{M}$	ON SCHEME	5
12	5,5 MIO €	2 Y	+ TIME	34
13	0, 9 MIO €	$5 \mathrm{M}$	+ COST, -TIME	5
14		•••		
15		•••		

EVM-WPM

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Case Study

First Results

Case study: The influence of the work package methodology on the forecast of cost and time using EVM FIRST RESULTS **Forecast cost (SCI) Forecast cost (CPI)** 140,000,000 70,000,000 120,000,000 60,000,000 100,000,000 50,000,000 80,000,000 40,000,000 EAC EAC 30,000,000 60,000,000 20,000,000 40,000,000 10,000,000 20,000,000 0 0 28 9 3 6 $\mathbf{7}$ 1 5 $\mathbf{2}$ 3 8 9 1 4 $\mathbf{5}$ 6 $\mathbf{7}$ Time Time • EVM-Method EVM + WPM - Total Cost

EVM + WPM EVM-Method - Total Cost

EVM-WPM

PF	EVM MAPE
1	3.90%
SPI	26.05%
CPI	12.06%
SCI	34.36%

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Case Study

Next Steps

First Results

Early warning signals

# PROJECT	EVM	WPM
1	/	80%: 5 CPIs
	/	75%: 4 CPIs 2 SPIs
2	/	/
	/	/
3	/	80%: 5 CPIs
	/	75%: 5 CPIs

EVM-WPM

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Case Study

First Results

THE NEXT STEPS

Issues

- Grouping in WPs
- Forecast time: WP + ?
- Incorporate Earned Schedule \blacktriangleright WPM \rightarrow back to project level

EVM-WPM

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Case Study

First Results

Annelies Troch

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

Troject control using earned value management. A case study										
9 SCENARIOS										
		Critical activities								
	-	0	+							
	<u>1</u>	<u>4</u>	<u>7</u>							
-	SPI(†) > 1	SPI(†) > 1	SPI(†) > 1							
	RD < PD	RD = PD	RD > PD							
	<u>2</u>	<u>5</u>	<u>8</u>							
0	SPI(†) > 1	SPI(†) = 1	SPI(†) < 1							
	RD < PD	RD = PD	RD > PD							
	<u>3</u>	<u>6</u>	<u>9</u>							
+	SPI(†) < 1	SPI(†) < 1	SPI(†) < 1							
	RD < PD	RD = PD	RD > PD							
	- O	- SPI(t) > 1 - SPI(t) > 1 RD < PD 2 0 SPI(t) > 1 RD < PD 3 + SPI(t) < 1 RD < PD	$\begin{array}{c} \textbf{Project control using edimed value management A G \begin{array}{c} \textbf{O} \\ \textbf{Critical activities} \\ \textbf{-} & \textbf{O} \\ \hline \textbf{1} & \textbf{4} \\ \textbf{-} & SPI(t) > 1 & SPI(t) > 1 \\ RD < PD & RD = PD \\ \hline \textbf{2} & \textbf{5} \\ \textbf{O} & SPI(t) > 1 & SPI(t) = 1 \\ RD < PD & RD = PD \\ \hline \textbf{3} & \textbf{6} \\ \textbf{+} & SPI(t) < 1 & SPI(t) < 1 \\ RD < PD & RD = PD \end{array}$							

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

Project control using parned value management. A case study

PROJECTS

- 4 construction projects of ± 15 activities
- I construction project of \pm 55 activities
- ▶ 2 production projects of \pm 20 activities
- I software implementation project of \pm 85 activities

MAPETIME

	ES-1		ES-SPI(t)	ES-SCI(t)	PV-1	PV-SPI	PV-SCI	ED-1	ED-SPI	ED-SCI
Scenario 1	39	,94	24,25	5 29,25	41,20	35,17	51,80	64,42	2 35,17	7 35,62
Scenario 2	30),24	19,06	5 20,25	27,52	23,17	29,08	27,7	7 23,17	7 23,37
Scenario 3	5	,94	16,75	5 48,28	5,59	13,95	66,92	5,18	8 13 <i>,</i> 95	5 45,35
Scenario 4	16	<i>,</i> 78	19,88	3 24,05	18,57	24,89	35,75	35,26	5 24,89	9 26,35
Scenario 5	15	,38	13,70) 13,70	11,54	13,33	3 13,33	9,63	3 13,33	3 13,33
Scenario 6	4	,97	18,10) 49,85	3,98	13,10	67,47	3,4	5 13,10) 44,75
Scenario 7	15	,95	19,15	5 22,58	14,01	19,50) 26,89	13,58	8 19,14	4 21,76
Scenario 8	20),99	17,37	7 21,04	24,34	25,53	30,90	20,17	7 21,84	4 25,88
Scenario 9	19	,86	16,08	3 22,18	26,59	27,17	⁷ 41,12	. 19,63	3 21,22	1 30,16
Correct										
Scenarios	27	,76	19,19) 23,18	29,91	27,76	5 38,23	33,00	25,35	5 28,76
Misleading										
Scenarios	10),91	18,47	7 36,19	10,54	17,86	5	14,37	7 17,77	7 34,55
Overall	18	3,90	18,26	5 27,91	19,26	21,76	5 40,36	22,12	2 20,64	4 29,62

MAPETIME

MAPE COST

	FAC (PF =	0.8*CPI +	0.8*CPI +					
	1)	CPI)	SPI)	SPI(t))	SCI)	SCI(t))	0.2 SPI)	0.2 SPI(t))
Scenario 1	25,64	8,60	16,22	14,52	19,87	['] 18,75	11,87	11,11
Scenario 2	14,96	5 7,88	14,28	13,68	15,17	<i>'</i> 14,60	10,80	10,26
Scenario 3	7,31	65,25	13,51	15,21	842,20	839,48	21,40	20,94
Scenario 4	7,48	5,62	9,80	9,95	12,70	13,23	7,68	7,30
Scenario 5			6,81	7,94	6,81	. 7,94	3,18	2,77
Scenario 6	7,95	67,95	14,87	17,79	862,18	8 862,53	21,43	21,19
Scenario 7	1,97	6,27	9,15	9,57	12,26	5 13,07	7,96	7,44
Scenario 8	5,88	3,21	11,86	11,99	16,24	16,32	5,91	5,47
Scenario 9	9,41	2,95	16,68	15,30	26,05	23,56	5,77	5,52
Correct								
Scenarios	13,97	7 5,66	14,76	13,87	19,33	18,31	8,59	8,09
Misleading								
Scenarios	6,17	7 36,27	11,83	13,13	432,34	432,08	14,62	14,22
Overall	8,95	5 18,64	12,57	12,88	201,50	201,05	10,67	10,22

MAPE COST

WHAT'S NEXT?

- Scenario analysis of additional projects Comparison of SV-SV(t) and SPI-SPI(t) Comparison of EAC(t) and RD for all tracking periods
- and all methods
- Comparison of EAC and RAC for all tracking periods and all methods

GLOBAL RESEARCH

Evaluating the accuracy of earned value management forecasting methods for time and cost

Not only <u>simulated</u> forecasting, but also <u>real</u> forecasting

<u>simulated</u> forecasting = methods evaluated based on <u>simulated</u> project progress project progress <u>real</u> forecasting = methods evaluated based on real

RESEARCH QUESTIONS

Which EVM method performs best for **time** forecasting; QI overall, and w.r.t. the influence of different project characteristics?

Which EVM method performs best for **cost** forecasting; overall, and w.r.t. the influence of different project characteristics?

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

<u>pject regularity</u> R

regular/irregular)

RESULTS

Time forecasting - Overall

	PVM			×	EDN	1	ESM			
	1	SPI	SCI	1	1 SPI SCI		1	SPI(t)	SCI(t)	
simulated (a)										
MAPE [%]	22.5	32.1	32.7	Μ	31.9	32.2	13.4	20.3	20.7	
rank [-]	3.4	5.4	6.7	5.5	4.9	5.3	2.0	3.9	4.5	
real (b)										
MAPE [%]	13.1	32.9	36.7	13.4	31.1	32.1	8.9	16.4	18.2	
rank [-]	3.8	7.2	7.4	3.2	6.1	6.0	1.7	4.3	4.7	

- **ESM-I** clearly is the most accurate time forecasting method
- ▶ Is there a project characteristic adversely influencing the accuracy of some methods? Yes, project regularity!

RESULTS

Time forecasting - Influence of project regularity

		PVM			EDM			ESM		
MAPE [%]	1	SPI	SCI	1	SPI	SCI	1	SPI(t)	SCI(t)	
simulated									Contrast of Dr. A	×
regular (a)	12.5	19.2	20.1	16.5	19.0	19.5	9.8	16.5	17.0	
mildly irreg.	16.2	25.5	26.4	30.8	25.3	25.7	12.2	17.8	18.5	accuracy
strongly irreg.	46.4	61.3	61.4	Μ	61.3	61.2	20.9	29.7	29.7	\checkmark
irregular (b)	32.0	44.3	44.7	Μ	44.1	44.3	16.8	24.0	24.4	v.
(b) - (a)	19.5	25.0	24.7	Μ	25.1	24.8	7.0	7.5	7.4	.
real							177		143.83	•
regular (c)	11.7	20.0	25.7	9.2	17.5	21.7	8.4	15.7	19.8	
mildly irreg.	11.5	54.8	53.8	16.7	53.0	50.5	7.6	14.6	13.8	accuracy 🖒
strongly irreg.	17.5	29.7	36.1	17.2	29.3	28.8	11.3	19.9	20.7	\checkmark
irregular (d)	14.2	43.4	45.7	16.9	42.2	40.6	9.3	17.0	16.9	
(d) - (c)	2.5	23.4	20.0	7.7	24.7	19.0	0.9	1.3	-2.9	-

RESULTS

Time forecasting - Influence of project regularity

			PVM			EDN	/1		ESM		
	MAPE [%]	1	SPI	SCI	1	SPI	SCI	1	SPI(t)	SCI(t)	
	simulated									Contrast of A	
	regular (a)	12.5	19.2	20.1	16.5	19.0	19.5	9.8	16.5	17.0	
	mildly irreg.	16.2	25.5	26.4	30.8	25.3	25.7	12.2	17.8	18.5	
	strongly irreg.	46.4	61.3	61.4	M	61.3	61.2	20.9	29.7	29.7	
- 1	\rightarrow irregular (b)	32.0	44.3	44.7	Μ	44.1	44.3	16.8	24.0	24.4	
	(b) - (a)	19.5	25.0	24.7	Μ	25.1	24.8	7.0	7.5	7.4	
	real							19. 122		242.75	
	regular (c)	11.7	20.0	25.7	9.2	17.5	21.7	8.4	15.7	19.8	
	mildly irreg.	11.5	54.8	53.8	16.7	53.0	50.5	7.6	14.6	13.8	
	strongly irreg.	17.5	29.7	36.1	17.2	29.3	28.8	11.3	19.9	20.7	
	\rightarrow irregular (d)	14.2	43.4	45.7	16.9	42.2	40.6	9.3	17.0	16.9	
	(d) - (c)	2.5	23.4	20.0	7.7	24.7	19.0	0.9	1.3	-2.9	

Project irregularity indeed has a significant adverse effect on accuracy

• ESM can better cope with irregularities

RESULTS

Time forecasting - Influence of project seriality

		PVM			EDM			ESM		
MAPE [%]	1	SPI	SCI	1	SPI	SCI	1	SPI(t)	SCI(t)	
simulated										
serial	10.0	14.0	16.5	10.8	13.7	15.3	8.6	11.2	12.5	
serpara.	12.8	16.2	16.5	13.4	15.9	16.1	11.1	16.5	16.7	accuracy 🔪
parallel	14.2	28.2	28.5	25.8	28.2	28.3	9.0	20.9	20.9	•
real		10.0000-0000-0	AND DEPARTMENT	1975-6376 1 K m				1010 - 1010 March 10		
serial	19.6	15.2	13.0	12.5	9.8	9.2	11.4	14.5	16.4	
serpara.	8.1	16.0	23.7	4.7	12.0	15.8	3.7	12.9	17.1	accuracy
parallel	10.0	23.6	31.6	9.7	22.8	29.0	9.1	17.3	22.3	\checkmark

Time forecasting accuracy increases with project seriality (Vanhoucke & Vandevoorde, 2007)

RESULTS

Cost forecasting - Overall

	EAC							
	1	CPI	SPI	SPI(+)	SCI	SCI(+)	0.8CPI $+$	0.8CPI $+$
	1		511	51 1(0)	DOI	001(0)	0.2SPI	$0.2 \mathrm{SPI}(\mathrm{t})$
simulated (a)								
MAPE [%]	1.0	1.0	13.1	11.7	13.6	12.2	6.8	4.8
rank [-]	1.3	1.5	6.0	5.7	6.5	6.3	3.7	3.4
real (b)		the first of a	0.000				t - missional feature	
MAPE [%]	8.1	10.7	27.7	14.4	30.1	16.8	10.8	9.1
rank [-]	3.1	3.3	5.9	4.9	6.1	5.5	3.5	2.9

• The most accurate methods for cost forecasting are: EAC-I, EAC-CPI and EAC-0.8CPI+0.2SPI(t)

No significant difference between them

RESULTS

Cost forecasting - Influence of project regularity

		EAU								
	MAPE [%]	1	CPI	SPI	SPI(t)	SCI	SCI(t)	0.8CPI+ 0.2SPI	0.8CPI $+$ 0.2 SPI (t)	
	simulated									
	regular (a)	0.8	0.9	9.3	9.4	10.1	10.2	4.1	3.4	
	mildly irreg.	1.7	1.2	12.4	10.8	12.6	11.1	4.5	3.1	
Г	strongly irreg.	0.7	0.8	20.8	16.6	20.8	16.7	13.6	8.7	
	\rightarrow irregular (b)	1.2	1.0	16.8	13.8	16.9	14.0	9.5	6.0	
	(b) - (a)	0.3	0.1	7.5	4.4	6.8	3.8	5.4	2.6	3.9
	real									
	regular (c)	5.4	5.8	14.2	12.7	17.9	15.8	5.9	6.0	
	mildly irreg.	5.0	9.8	65.5	9.9	58.0	6.5	10.9	4.2	
Γ	strongly irreg.	15.6	20.3	21.5	21.2	29.9	26.7	19.5	18.8	
	\rightarrow irregular (d)	10.9	15.6	41.1	16.2	42.4	17.7	15.7	12.3	
	(d) - (c)	5.5	9.9	26.9	3.5	24.5	1.9	9.7	6.3	.

Project irregularity also has a significant adverse effect on cost forecasting accuracy (of the same magnitude as for time forecasting)

T A	0
LA	U.

RESULTS

Cost forecasting - Influence of project seriality

	EAC							
MAPE [%]	1	CPI	SPI	SPI(t)	SCI	SCI(t)	0.8 CPI + 0.2 SPI	0.8 CPI + 0.2 SPI(t)
simulated								
serial	1.7	1.6	7.5	7.3	10.3	10.1	3.1	3.4
serpara.	0.8	1.0	6.9	8.4	7.2	8.7	2.7	2.6
parallel	0.2	0.3	14.3	12.6	14.4	12.6	7.1	4.7
real								
serial	3.0	2.7	14.2	14.3	16.1	17.0	2.9	3.7
serpara.	8.6	7.8	10.8	12.4	11.4	13.0	6.0	5.8
parallel	5.1	6.2	15.6	12.2	21.2	16.5	7.1	7.0

► No influence of project seriality (\leftrightarrow time forecasting)

CONCLUSIONS

Time forecasting

- Overall: **ESM-I** is the best method
- Influence of project regularity

parallel

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

regular

100%

high

serial

100%

high

CONCLUSIONS

Cost forecasting

- Overall: best methods are EAC-I, EAC-CPI and EAC-0.8CPI+0.2SPI(t)
- Influence of project regularity

Influence of project seriality

parallel

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

regular 100%

serial

100%

FUTURE RESEARCH

- Continuous <u>qualitative</u> expansion of the **empirical** project database └ project cards
- Database = basis for multiple future research topics

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

practitioners

FUTURE RESEARCH

- Continuous <u>qualitative</u> expansion of the empirical project database → project cards
- Database = basis for multiple future research topics
 - Further development of project regularity concept
 - Improving time and cost forecasting techniques (based on EVM)
 - Integration of SRA with EVM

QUESTIONS?

- J. Batselier M. Vanhoucke
- L. Maerschalck A. Troch P. Van Schoors

Contact: jordy.batselier@ugent.be mario.vanhoucke@ugent.be

Jordy Batselier et al. - Classification of risk analysis and project control performance on empirical project data

For more information on our research: www.projectmanagement.ugent.be www.protrack.be